Interfacial properties of p53-DNA complexes containing various recognition elements

2019 
Abstract Methods which can distinguish between specific and non-specific protein interactions leading to the identification of hubs and nodes are still desired. This work shows utilization of chronopotentiometric stripping analysis in combination with a mercury electrode in the study of protein-DNA interactions at thiol-modified electrodes. The complex of tumor suppressor p53 core domain (p53CD) and DNA undergoes disintegration due to the effect of the electric field, accompanied by a remarkable increase in the electrocatalytic reduction signal. By adjusting stripping current intensities and temperature, the transition between intact and disintegrated complex reflected differences in the stabilities of sequence-specific complexes with different recognition elements. Higher stabilities of p53-DNA complexes were observed for DNA binding sites connected with cell-cycle arrest and p53 negative autoregulation, than those for DNA associated with cell apoptosis, in good concordance with electrophoretic mobility shift assay in polyacrylamide gels. These data highlight the utility of this method for studying the dynamics of surface-attached protein-DNA complexes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []