Predicting novel CircRNA-disease associations based on random walk and logistic regression model.

2020 
Abstract Circular RNAs (circRNAs), a large group of small endogenous noncoding RNA molecules, have been proved to modulate protein-coding genes in the human genome. In recent years, many experimental studies have demonstrated that circRNAs are dysregulated in a number of diseases, and they can serve as biomarkers for disease diagnosis and prognosis. However, it is expensive and time-consuming to identify circRNA-disease associations by biological experiments and few computational models have been proposed for novel circRNA-disease association prediction. In this study, we develop a computational model based on the random walk and the logistic regression (RWLR) to predict circRNA-disease associations. Firstly, a circRNA-circRNA similarity network is constructed by calculating their functional similarity of circRNA based on circRNA-related gene ontology. Then, a random walk with restart is implemented on the circRNA similarity network, and the features of each pair of circRNA-disease are extracted based on the results of the random walk and the circRNA-disease association matrix. Finally, a logistic regression model is used to predict novel circRNA-disease associations. Leave one out validation (LOOCV), five-fold cross validation (5CV) and ten-fold cross validation (10CV) are adopted to evaluate the prediction performance of RWLR, by comparing with the latest two methods PWCDA and DWNN-RLS. The experiment results show that our RWLR has higher AUC values of LOOCV, 5CV and 10CV than the other two latest methods, which demonstrates that RWLR has a better performance than other computational methods. What’s more, case studies also illustrate the reliability and effectiveness of RWLR for circRNA-disease association prediction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    11
    Citations
    NaN
    KQI
    []