Antimicrobial Resistance and Biofilm Formation Capacity of Salmonella enterica Serovar Enteritidis Strains Isolated from Poultry and Humans in Poland

2020 
Salmonella enterica ser. Enteritidis (S. enterica ser. Enteritidis) is the most frequently detected serovar in human salmonellosis, and its ability to produce a biofilm and the risk of transmission from animals and food of animal origin to humans are significant. The main aim of the present work was to compare S. enterica ser. Enteritidis strains isolated from poultry and human feces in terms of resistance profiles, prevalence of selected resistance genes, and their potential for biofilm formation, by assessing their biofilm growth intensity, the prevalence and expression of selected genes associated with this phenomenon, and the correlation between increased antimicrobial resistance and biofilm formation ability of the two tested groups of S. enterica ser. Enteritidis. This study showed a difference in antimicrobial resistance (minimal inhibitory concentration value) between S. enterica ser. Enteritidis groups; however, the majority of multidrug-resistant (MDR) strains were isolated from poultry (environmental samples from chicken broilers, turkey broilers, and laying hens). Differences in the prevalence of resistance genes were observed; the most common gene among poultry strains was floR, and that among strains from humans was blaTEM. S. enterica ser. Enteritidis strains isolated from poultry under the tested incubation conditions exhibited better biofilm growth than strains isolated from humans. A higher level of gene expression associated with the production of cellulose was only detected in the S48 strain isolated from poultry. On the other hand, increased expression of genes associated with quorum sensing was observed in two strains isolated from poultry farms and one strain isolated from human feces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    4
    Citations
    NaN
    KQI
    []