Long-term continuous and real-time in situ monitoring of Pb(II) toxic contaminants in wastewater using solid-state ion selective membrane (S-ISM) Pb and pH auto-correction assembly

2020 
Abstract Lead (Pb) contaminants in wastewater have inhibited microbial activities and thus exerted high energy consumption in wastewater treatment plants (WWTPs). Current Pb monitoring has been conducted ex situ and off line, unable to affect real-time proactive control and operation. This study targets the crucial challenge of better and faster Pb monitoring by developing novel mm-sized screen-printed solid-state ion-selective membrane (S-ISM) Pb sensors with low-cost, high accuracy and long-term durability and that enable real-time in situ monitoring of Pb(II) ion contamination down to low concentrations (15 ppb - 960 ppb) in wastewater. An innovative pH auto-correction data-driven model was built to overcome the inextricable pH inferences on Pb(II) ISM sensors in wastewater. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) analysis showed (3,4-ethylenedioxythiophene, EDOT) deposited onto the mm-sized screen-printed carbon electrodes using electropolymerization effectively alleviated the interferences from dissolved oxygen and improved long-term stability in wastewater. Monte Carlo simulation of the nitrification process predicted that real-time, and high accurate in situ monitoring of Pb(II) in wastewater and swift feedback control could save ∼53% of energy consumption by alleviating the errors from pH and DO impacts in WWTPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    7
    Citations
    NaN
    KQI
    []