Common ALS/FTD risk variants in UNC13A exacerbate its cryptic splicing and loss upon TDP-43 mislocalization

2021 
Abstract Variants within the UNC13A gene have long been known to increase risk of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-43. Here, we show that TDP-43 depletion induces robust inclusion of a cryptic exon (CE) within UNC13A, a critical synaptic gene, resulting in nonsense-mediated decay and protein loss. Strikingly, two common polymorphisms strongly associated with ALS/FTD risk directly alter TDP-43 binding within the CE or downstream intron, increasing CE inclusion in cultured cells and in patient brains. Our findings, which are the first to demonstrate a genetic link specifically between loss of TDP-43 nuclear function and disease, reveal both the mechanism by which UNC13A variants exacerbate the effects of decreased nuclear TDP-43 function, and provide a promising therapeutic target for TDP-43 proteinopathies. One-Sentence Summary Shared ALS/FTD risk variants increase the sensitivity of a cryptic exon in the synaptic gene UNC13A to TDP-43 depletion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    8
    Citations
    NaN
    KQI
    []