Stabilization of localized structures by inhomogeneous injection in frequency comb generators

2019 
We consider the formation of temporal localized structures or Kerr comb generation in a microresonator with inhomogeneities. We show that the introduction of even a small inhomogeneity in the injected beam widens the stability region of localized solutions. The homoclinic snaking bifurcation associated with the formation of localized structures and clusters of them with decaying oscillatory tails is constructed. Furthermore, the inhomogeneity allows not only to control the position of localized solutions, but strongly affects the stability domain creating a region that is free from the snaking multistability and therefore especially suitable for Kerr comb generation. We identify a regime of larger detuning, where localized structures do not exhibit a snaking behavior. In this regime, the effect of inhomogeneities on localized solutions is far more complex: they can act either attracting or repelling. We identify the pitchfork bifurcation responsible for this transition. Finally, we use a potential well approach to determine the force exerted by the inhomogeneity and summarize with a full analysis of the parameter regime where localized structures and therefore Kerr comb generation exist and analyze how this regime changes in the presence of an inhomogeneity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []