Probabilistic Change of Wheat Productivity and Water Use in China for Global Mean Temperature Changes of 1°, 2°, and 3°C

2013 
AbstractImpacts of climate change on agriculture are a major concern worldwide, but uncertainties of climate models and emission scenarios may hamper efforts to adapt to climate change. In this paper, a probabilistic approach is used to estimate the uncertainties and simulate impacts of global warming on wheat production and water use in the main wheat cultivation regions of China, with a global mean temperature (GMT) increase scale relative to 1961–90 values. From output of 20 climate scenarios of the Intergovernmental Panel on Climate Change Data Distribution Centre, median values of projected changes in monthly mean climate variables for representative stations are adapted. These are used to drive the Crop Environment Resource Synthesis (CERES)-Wheat model to simulate wheat production and water use under baseline and global warming scenarios, with and without consideration of carbon dioxide (CO2) fertilization effects. Results show that, because of temperature increase, projected wheat-growing periods ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    25
    Citations
    NaN
    KQI
    []