Molecular Dynamics Simulations of Water Structure and Diffusion in a 1 nm Diameter Silica Nanopore as a Function of Surface Charge and Alkali Metal Counterion Identity

2018 
Water confined in nanopores—particularly in pores narrower than 2 nm—displays distinct physicochemical properties that remain incompletely examined despite their importance in nanofluidics, molecular biology, geology, and materials sciences. Here, we use molecular dynamics simulations to investigate the coordination structure and mobility of water and alkali metals (Li, Na, K, Cs) inside a 1 nm diameter cylindrical silica nanopore as a function of surface charge density, a model system particularly relevant to the alteration kinetics of silicate glasses and minerals in geologic formations. We find that the presence of a negative surface charge and adsorbed counterions within the pore strongly impacts water structure and dynamics. In particular, it significantly orients water O–H bonds toward the surface and slows water diffusion by almost 1 order of magnitude. Ion crowding in the charged nanopore enhances the tendency of counterions to coordinate closely with the silica surface, which moderates the impact...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    33
    Citations
    NaN
    KQI
    []