Solar system science with the Wide-Field InfraRed Survey Telescope (WFIRST)

2017 
We present a community-led assessment of the solar system investigations achievable with NASA's next-generation space telescope, the Wide Field InfraRed Survey Telescope (WFIRST). WFIRST will provide imaging, spectroscopic, and coronagraphic capabilities from 0.43-2.0 $\mu$m and will be a potential contemporary and eventual successor to JWST. Surveys of irregular satellites and minor bodies are where WFIRST will excel with its 0.28 deg$^2$ field of view Wide Field Instrument (WFI). Potential ground-breaking discoveries from WFIRST could include detection of the first minor bodies orbiting in the Inner Oort Cloud, identification of additional Earth Trojan asteroids, and the discovery and characterization of asteroid binary systems similar to Ida/Dactyl. Additional investigations into asteroids, giant planet satellites, Trojan asteroids, Centaurs, Kuiper Belt Objects, and comets are presented. Previous use of astrophysics assets for solar system science and synergies between WFIRST, LSST, JWST, and the proposed NEOCam mission are discussed. We also present the case for implementation of moving target tracking, a feature that will benefit from the heritage of JWST and enable a broader range of solar system observations.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    167
    References
    0
    Citations
    NaN
    KQI
    []