Use of Low Frequency Raman Bands to Identify Non-planar Deformation of Ni(II) Meso-tetraphenylporphyrin Induced by Axial Ligands

2021 
It is important to identify non-planar deformations of porphyrin macrocycle in metallo-porphyrin proteins due to their functional relevance. The relationship between non-planar deformations of porphyrin macrocycle and low frequency Raman spectral bands of Ni(II) Meso-tetraphenyl porphyrin (NiTPP), with different coordination numbers , was studied by density functional theory (DFT) , normal coordinate structural decomposition (NSD) method and Raman experiments. The results show that the crystal of four-coordinate NiTPP has two major kinds of nonplanar deformations: ruffling and saddling. The non-planar deformations of ruffling and saddling for NiTPP are 1.473 Å and 0.493 Å determined by DFT calculation. The ruffling and saddling deformations can be identified by using the low frequency Raman characteristic peaks (r12 ,r13 ) and (r16 ,r17 ), respectively. When four-coordinate NiTPP is transformed to the six-coordinate bis(pyrrolidine) NiTPP (NiTPP(Pyr)2), the large non-planar distortion of the porphyrin macrocycle almost disappears, with the non-planar deformation of saddling only about 0.213 Å estimated by DFT calculation. Experimentally, we can make use of the characteristic peaks of low frequency Raman spectra to identify the saddling deformation beyond 0.25 Å.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []