Associations of combined exposures to ambient temperature, air pollution, and green space with hypertension in rural areas of Anhui Province, China: A cross-sectional study.

2021 
Abstract Hypertension (HTN) was a major preventable cause of cardiovascular disease (CVD), contributing to a huge disease burden. Ambient temperature, air pollution and green space were important influencing factors of HTN, and few studies have assessed the effects and interactions of ambient temperature, air pollution and green space on HTN in rural areas. In this study, we selected 8400 individuals randomly in rural areas of Anhui Province by a multi-stage stratified cluster sampling. A total of 8383 individuals were included in the final analysis. We collected particulate pollutants and meteorological data from the local air quality monitoring stations and National Center for Meteorological Science from January 1 to December 31, 2020, respectively. The normalized differential vegetation index (NDVI) of Anhui Province in 2020 was produced and processed by remote sensing inversion on the basis of medium resolution satellite images. The average annual mean exposure concentrations of air pollution, meteorological factors, and NDVI were calculated for each individual based on the geocoded residential address. HTN was defined according the Chinese Guidelines for Prevention and Treatment of HTN. The effects and interactions of ambient temperature, air pollution and green space on HTN were evaluated by generalized linear model and interaction model, respectively. In this study, the prevalence of HTN was 24.14%. The adjusted odd ratio of HTN for each 1 μg/m3 increasing in PM2.5 and PM10, 1 °C of ambient temperature, and 0.1 of NDVI were:1.276 (1.013, 1.043), 1.012 (1.006, 1.018), 0.862 (0.862, 0.981) and 0.669 (0.611, 0.733), respectively. The results showed that air pollutants were positively correlated with HTN, while ambient temperature and green space were negatively correlated with HTN. Meanwhile, the negative associations of green space on HTN could decrease with the increasing concentrations of air pollution, but increase with the rising of ambient temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []