Evolutionary conservation and functional divergence of the LFK gene family play important roles in the photoperiodic flowering pathway of land plants

2018 
ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1)—blue-light photoreceptors—play important roles in regulating the circadian clock and photoperiodic flowering pathway in plants. In this study, phylogenetic analysis revealed that the LOV (Light, Oxygen, or Voltage) and Kelch repeat-containing F-box (LFK) gene family can be classified into two clades, ZTL/LKP2 and FKF1, with clear differentiation between monocots and dicots within each clade. The LFK family genes underwent strong purifying selection; however, signatures of positive selection to adapt to local conditions still existed in 18 specific codons. In 87 diverse maize inbred lines, significant differences were identified (P ≤ 0.01) for days to female flowering between the haplotypes consisting of eight positive selection sites at ZmFKF1b corresponding to tropical and temperate maize groups of the phylogenetic tree, indicating a key role of ZmFKF1b in maize adaptive evolution. In addition, positive coevolution was detected in the domains of the LFK family for long-term cooperation to targets. The Type-I and Type-II functional divergence analysis revealed subfunctionalization or neofunctionalization of the LFKs, and the ZTL subfamily is most likely to maintain the ancestral function of LFKs. Over 50% of critical amino acid sites involved in the functional divergence were identified in the Kelch repeat domain, resulting in the distinction of substrates for ubiquitination and degradation. These results suggest that evolutionary conservation contributes to the maintenance of critical physiological functions, whereas functional divergence after duplication helps to generate diverse molecular regulation mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    5
    Citations
    NaN
    KQI
    []