Joint toxicity of lead and cadmium on the behavior of zebrafish larvae: An antagonism.

2021 
Although the individual toxicity of lead (Pb) and cadmium (Cd) was intensively studied, little is known about their joint toxicity on the development of circadian behavioral rhythm. Therefore, we co-exposed zebrafish to Pb and Cd to investigate the alterations of behavioral rhythm and the potential mechanism. Inductively coupled plasma mass spectrometry analysis was used to detect the internal exposure level of heavy metals. The behavioral rhythm was monitored by a video-track tracking system. The changes of gene expression regarding melatonin-related molecules and clock genes were analyzed by quantitative polymerase chain reaction and JTK-Cycle analysis. The results showed that the level of Pb2+ and Cd2+ accumulated in the co-exposure group were significantly lower than that in the Pb or Cd group. Exposed to Pb reduced the locomotor activity; the behavioral rhythms were disrupted by Cd, while the pattern in the co-exposure group showed an antagonistic effect on locomotor activity and behavioral rhythm. The expression rhythm of aanat1 was disturbed and the expression levels of mtnr1aa and mtnr1bb were decreased by co-exposure treatment, but mtnr1c was increased in Pb and Cd group, respectively. Exposure to Cd caused the disruption of expression rhythm in clock genes, like clock1b, clock2, and cry1b, while only the rhythm of clock2 was disrupted in the co-exposure group. The results suggest that the behavioral rhythm disruption caused by Cd exposure is associated with the disturbance of certain circadian genes, whereas Pb exposure only abates the locomotor activity; an antagonistic effect on the behavioral pattern when co-exposed zebrafish larvae to Pb and Cd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []