Absorption and generation of femtosecond laser-pulse excited spin currents in non-collinear magnetic bilayers

2017 
Spin currents can be generated on an ultrafast timescale by excitation of a ferromagnetic (FM) thin film with a femtosecond laser-pulse. Recently, it has been demonstrated that these ultrafast spin currents can transport angular momentum to neighbouring FM layers, being able to change both the magnitude and orientation of the magnetization in the adjacent layer. In this work, both the generation and absorption of these optically excited spin currents are investigated. This is done using non-collinear magnetic bilayers, i.e. two FM layers separated by a conductive spacer. Spin currents are generated in a Co/Ni multilayer with out-of-plane (OOP) anisotropy, and absorbed by a Co layer with an in-plane (IP) anisotropy. This behaviour is confirmed by careful analysis of the laser-pulse induced magnetization dynamics, whereafter it is demonstrated that the transverse spin current is absorbed very locally near the injection interface of the IP layer (90% within the first approx. 2 nm). Moreover, it will also be shown that this local absorption results in the excitation of THz standing spin waves within the IP layer. The dispersion measured for these high frequency spin waves shows a discrepancy with respect to the theoretical predictions, for which a first explanation involving intermixed interface regions is proposed. Lastly, the spin current generation is investigated using different number of repeats for the Co/Ni multilayer, which proves to be of great relevance for identifying the optical spin current generation mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    16
    Citations
    NaN
    KQI
    []