The P2RY2 Receptor Induces Carcinoma Cell Migration and EMT Through Cross-Talk With Epidermal Growth Factor Receptor.

2016 
Extracellular nucleotides are signaling elements present in the tumor microenvironment; however, their role in tumor growth is not completely understood. In the present study, we asked whether nucleotides regulate cell migration in ovarian carcinoma-derived cells. We observed that 100 μM UTP induced migration in SKOV-3 cells (1.57 ± 0.08 fold over basal), and RT-PCR showed expression of transcripts for the P2RY2 and P2RY4 receptors. Knockdown of P2RY2 expression in SKOV-3 cells (P2RY2-KD) abolished the UTP-induced migration. The mechanism activated by UTP to induce migration involves transactivation of the epidermal growth factor receptor (EGFR) since we observed that the EGFR kinase inhibitor AG1478 and the PI3K inhibitor Wortmannin inhibit this response (to 0.76 ± 0.23 and 0.46 ± 0.14 relative to the control, respectively). In agreement with these observations, UTP was able to modify the phosphorylation state of the EGFR; likewise, the induction of ERK1/2 phosphorylation promoted by UTP was abolished by a 30–60 min treatment with AG1478. Our data also suggested that the enhanced cell migration involves the epithelium to mesenchymal transition (EMT) process, since a 12 h stimulation of SKOV-3 cells with 100 μM UTP showed an increase in vimentin and SNAIL protein levels (459.8 ± 132.4% over basal for SNAIL). Interestingly, treatment with apyrase (10 U/mL) reduces the migration of control cells and induces a considerable enrichment of E-cadherin in the cell–cell contacts, favoring an epithelial phenotype and strongly suggesting that the nucleotides released by tumor cells and acting through the P2RY2 receptor are potential regulators of invasiveness. J. Cell. Biochem. 9999: 1–11, 2015. © 2015 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    23
    Citations
    NaN
    KQI
    []