Electromechanical Properties of Ba(1-x)SrxTiO3 Perovskite Solid Solutions from First-Principles Calculations

2017 
An enhancement of the piezoelectric properties of lead-free materials, which allow conversion of mechanical energy into electricity, is a task of great importance and interest. Results of first-principles calculations of piezoelectric/electromechanical properties of the Ba(1-x)SrxTiO3 (BSTO) ferroelectric solid solution with perovskite structure are presented and discussed. Calculations are performed within the linear combination of atomic orbitals (LCAO) approximation and periodic-boundary conditions, using advanced hybrid functionals of the density-functional-theory (DFT). A supercell model allows to investigate multiple chemical compositions x. In particular, three BSTO solid solutions with x = 0, 0.125, 0.25 are considered within the experimental stability domain of the ferroelectric tetragonal phase of the solid solution (x<0.3). The configurational disorder with x=0.25 composition is also investigated explicitly considering the seven possible atomic configurations corresponding to this composition. ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []