Quantitative phase imaging of single particles from a cryoEM micrograph

2022 
Abstract We show that de-focused single particle micrographs recorded using a cryo-electron microscope (cryoEM) system may be processed like a Fresnel zone in-line hologram to obtain physically meaningful quantitative phase maps associated with individual particles. In particular, a region-of-interest (ROI) of the de-focused micrograph surrounding a particle can be numerically back-propagated, in order to determine accurate de-focus information for single particles based on the sparsity-of-gradient merit function. Further with the knowledge of de-focus information, an iterative Fresnel zone phase retrieval algorithm using image sparsity constraints can accurately estimate the quantitative phase information associated with a single particle. The proposed methodology which can correct for both de-focus and spherical aberrations is a deviation from the image processing chain currently used in single particle cryoEM reconstructions. Our illustrations as presented here suggest that the phase retrieval approach applies uniformly to de-focused image data recorded using the traditional CCD detectors as well as the newer direct electron detectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []