Implementation of quantum key distribution surpassing the linear rate-transmittance bound

2020 
Quantum key distribution (QKD)1,2 offers a long-term solution to secure key exchange. Due to photon loss in transmission, it was believed that the repeaterless key rate is bounded by a linear function of the transmittance, O(η) (refs. 3,4), limiting the maximal secure transmission distance5,6. Recently, a novel type of QKD scheme has been shown to beat the linear bound and achieve a key rate performance of $$O(\sqrt{\eta })$$ (refs. 7–9). Here, by employing the laser injection technique and the phase post-compensation method, we match the modes of two independent lasers and overcome the phase fluctuation. As a result, the key rate surpasses the linear bound via 302 km and 402 km commercial-fibre channels, over four orders of magnitude higher than existing results5. Furthermore, our system yields a secret key rate of 0.118 bps with a 502 km ultralow-loss fibre. This new type of QKD pushes forward long-distance quantum communication for the future quantum internet. Phase-matching quantum key distribution is implemented with a 502 km ultralow-loss optical fibre. The fluctuations of the laser initial phases and frequencies are suppressed by the laser injection technique and the phase post-compensation method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    63
    Citations
    NaN
    KQI
    []