Large-gap quantum anomalous Hall phase in hexagonal organometallic frameworks

2018 
The nontrivial band gap plays a critical role in quantum anomalous Hall (QAH) insulators. In this work, we propose that the intrinsic QAH phase with sizable band gaps up to 367 meV is achieved in two-dimensional hexagonal organometallic frameworks (HOMFs). Based on first-principles calculations and effective model analysis, we uncover that these large band gaps in transition metal based HOMFs are opened by strong spin-orbital coupling of the localized 4d or 5d electrons. Importantly, we reveal that Coulomb correlations can further significantly enhance the nontrivial band gaps. In addition, we suggest a possible avenue to grow these organometallic QAH insulators on a semiconducting SiC(111) substrate, and the topological features are perfectly preserved due to the van der Waals interaction. Our work shows that the correlation remarkably enhances the nontrivial band gaps, providing exotic candidates to realize the QAH states at high temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    15
    Citations
    NaN
    KQI
    []