Electrophysiological correlates of the Categorization Working Memory Span task in older adults

2020 
Abstract Older adults typically show poor performance in tasks assessing working memory (WM), a crucial cognitive mechanism. The present study examined the electrophysiological correlates of a classic complex WM task often used in studies involving older adults, the Categorization Working Memory Span task (CWMS), by means of event-related potentials. Thirty-five healthy, right-handed older adults (64–75 years) were presented the CWMS task while a 38-channel EEG was measured, and the N1, P1, and word recognition potential (RP) were analyzed on four regions of interest (ROIs) of 5 electrodes each. Additionally, late positive components (P200 and P300) were analyzed in midline ROIs of 3 electrodes each. Participants also executed an n-back task (2-back condition) and an objective performance-based task (the Ability to solve Problems in Everyday life [APE]). At a behavioral level, significant correlations were found between the CWMS, the 2-back, and the APE tests. At a physiological level, N1 and word RP showed greater bilateral amplitude in posterior electrodes, but the better the CWMS and the 2-back performance, the greater the RP amplitude on posterior left sites. The CWMS task induced a clear P200 component, but its amplitude was not correlated with participants’ behavioral performance. Altogether, notwithstanding that the bilateral RP pattern elicited by the CWMS is a clear marker of WM processing in older adults, better elderly performers on this complex WM test showed greater left hemisphere dominance to the automatic word RP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    1
    Citations
    NaN
    KQI
    []