Intra-night optical variability of $\gamma-$ray detected narrow-line Seyfert 1 galaxies

2020 
We report the first attempt to systematically characterise intra-night optical variability (INOV) of the rare and enigmatic subset of Narrow-Line Seyfert 1 galaxies (NLSy1s), which is marked by detection in the $\gamma$-ray band and is therefore endowed with Doppler boosted relativistic jets, like blazars. However, the central engines in these two types of AGN are thought to operate in different regimes of accretion rate. Our INOV search in a fairly large and unbiased sample of 15 $\gamma$-ray NLSy1s was conducted in 36 monitoring sessions, each lasting $\geq$ 3 hrs. In our analysis, special care has been taken to address the possible effect on the differential light curves, of any variation in the seeing disc during the session, since that might lead to spurious claims of INOV from such AGN due to the possibility of a significant contribution from the host galaxy to the total optical emission. From our observations, a duty cycle (DC) of INOV detection in the $\gamma$-ray NLSy1s is estimated to be around 25% - 30%, which is comparable to that known for blazars. This estimate of DC will probably need an upward revision, once it becomes possible to correct for the dilution of the AGN's nonthermal optical emission by the (much steadier) optical emission contributed not only by the host galaxy but also the nuclear accretion disc in these high Eddington rate accretors. Finally, we also draw attention to the possibility that sharp optical flux changes on sub-hour time scale are less rare for $\gamma$-ray NLSy1s, in comparison to blazars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []