Efficient conversion of hemicellulose sugars from spent sulfite liquor into optically pure L-lactic acid by Enterococcus mundtii.

2021 
Abstract Spent sulfite liquor (SSL), a waste stream from wood pulp production, has great potential as carbon source for future industrial fermentations. In the present study, SSL was separated into a hemicellulose derived sugar syrup (HDSS) and a lignosulfonic fraction by simulated moving bed chromatography. The recovery of SSL sugars in the HDSS was 89% and the fermentation inhibitors furfural, 5-hydroxymethylfurfural and acetic acid were removed by 98.7%, 60.5% and 75.5%, respectively. The obtained sugars have been converted to L-lactic acid, a building block for bioplastics, by fermentation with the lactic acid bacterium Enterococcus mundtii DSMZ 4838. Batch fermentations on HDSS produced up to 56.3 g/L L-lactic acid. Simultaneous conversion of pentose and hexose sugars during fed-batch fermentation of wildtype E. mundtii led to 87.9 g/L optically pure (> 99%) L-lactic acid, with maximum productivities of 3.25 g/L.h and yields approaching 1.00 g/g during feeding phase from HDSS as carbon source.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []