Near-Infrared absorbing J-Aggregates of boron dipyrromethene for high efficient photothermal therapy.

2021 
Abstract Constructing bioactive materials remains a big challenge through the aggregates of molecules. Herein, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative containing three nitro groups (BDP-(NO2)3) was synthesized, which displays the characteristic of J-aggregate with pronounced red-shifted absorption in nonpolar solvent and aqueous media. The bathochromic shift from 635 to 765 nm facilitates photothermal transition upon the irradiation of near-infrared (NIR) light. Interestingly, BDP-(NO2)3 nanoparticles (NPs) fabricated from BDP-(NO2)3 and poly(oxyethylene)-poly(oxypropylene) copolymer (F-127), still exhibit obvious J-aggregate, which possess the merits of hydrophilicity, NIR absorption, high photothermal conversion efficiency, excellent biosafety, and can behave as unique candidates for photothermal therapy. In vitro and in vivo experiments validate that BDP-(NO2)3 NPs can effectively suppress the proliferation of cancer cells and lead to tumor ablation. This assembly method would be a generic and efficient mode for reasonable design of functional nanomaterials, and could inspire more study on aggregates of organic molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    2
    Citations
    NaN
    KQI
    []