Gradual opening of Smc arms in prokaryotic condensin

2021 
Summary Multi-subunit SMC ATPases control chromosome superstructure apparently by catalyzing a DNA-loop-extrusion reaction. SMC proteins harbor an ABC-type ATPase “head” and a “hinge” dimerization domain connected by a coiled coil “arm.” Two arms in a SMC dimer can co-align, thereby forming a rod-shaped particle. Upon ATP binding, SMC heads engage, and arms are thought to separate. Here, we study the shape of Bacillus subtilis Smc-ScpAB by electron-spin resonance spectroscopy. Arm separation is readily detected proximal to the heads in the absence of ligands, and separation near the hinge largely depends on ATP and DNA. Artificial blockage of arm opening eliminates DNA stimulation of ATP hydrolysis but does not prevent basal ATPase activity. We report an arm contact as being important for controlling the transformations. Point mutations at this arm interface eliminated Smc function. We propose that partially open, intermediary conformations provide directionality to SMC DNA translocation by (un)binding suitable DNA substrates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    4
    Citations
    NaN
    KQI
    []