Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics

2017 
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin–Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose–Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde–Ferrel–Larkin–Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino–Peter mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    192
    References
    13
    Citations
    NaN
    KQI
    []