An integration of human factors into quantitative risk analysis using Bayesian Belief Networks towards developing a ‘QRA+’

2020 
Abstract Quantitative Risk Analysis (QRA) is a standard tool in some high-risk industries (such as the on- and offshore exploration and production and chemical industry). Presently, existing knowledge concerning human error likelihood and human reliability assessment is insufficiently represented in QRAs. In this paper we attempt to implement the quantification of the human factors in a QRA, which we call QRA+. We analysed a specific incident scenario: the risk of overfilling chemical storage tanks that operate at atmospheric pressure. This scenario was chosen because it is a relevant example of a high-risk scenario in the chemical industry. We identified relevant technological and human parameters within this scenario through on-site visits and interviews with site-experts. The quantitative knowledge concerning the technological parameters was obtained from officially documented SIL statistics, whereas the Standardized Plant Analysis Risk-Human Reliability analysis (SPAR-H) was used to quantify the human factors. Beta distributions were used to model failure probability distributions to account for the uncertainty inherent in dealing with human reliability. For seamless integration of existing qualitative and quantitative knowledge, we made use of a Bayesian Belief Network. The resulting model provides an integrated and more accurate estimation of the failure probabilities for both technological and human factors and the uncertainty surrounding such probability estimates. Furthermore, it gives insight in where these failure probabilities originate and how they interact. This will allow companies to identify those parameters they need to influence to get optimal results concerning their management of risk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    13
    Citations
    NaN
    KQI
    []