Micromagnetic modeling of magnon coherent states in a nonuniform magnetic field.

2021 
The study of the dynamics of magnetically ordered states in strong excitation through micromagnetic modeling has become relevant due to the observation of magnon Bose condensation. In particular, the question has arisen about the possibility of describing the coherent quantum state by the quasi-classical Landau-Lifshitz-Gilbert equations. We performed micromagnetic simulations of magnetization precession with a high angle of deviation in an out-of-plane nonuniform dc field. Our results confirm the formation of coherent magnon state under conditions of high excitation. This coherent state extends over long distances and described by a spatially inhomogeneous amplitude and a homogeneous precession phase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []