Immuno-PET Imaging of Engineered Human T Cells in Tumors.

2016 
Sensitive in vivo imaging technologies applicable to the clinical setting are still lacking for adoptive T-cell-based immunotherapies, an important gap to fill if mechanisms of tumor rejection or escape are to be understood. Here, we propose a highly sensitive imaging technology to track human TCR-transgenic T cells in vivo by directly targeting the murinized constant TCR beta domain (TCRmu) with a zirconium-89 ((89)Zr)-labeled anti-TCRmu-F(ab')2 fragment. Binding of the labeled or unlabeled F(ab')2 fragment did not impair functionality of transgenic T cells in vitro and in vivo Using a murine xenograft model of human myeloid sarcoma, we monitored by Immuno-PET imaging human central memory T cells (TCM), which were transgenic for a myeloid peroxidase (MPO)-specific TCR. Diverse T-cell distribution patterns were detected by PET/CT imaging, depending on the tumor size and rejection phase. Results were confirmed by IHC and semiquantitative evaluation of T-cell infiltration within the tumor corresponding to the PET/CT images. Overall, these findings offer a preclinical proof of concept for an imaging approach that is readily tractable for clinical translation. Cancer Res; 76(14); 4113-23. ©2016 AACR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    37
    Citations
    NaN
    KQI
    []