New cell surface markers for murine fetal hepatic stem cells identified through high density complementary DNA microarrays

2007 
Isolation of hepatic stem cells from the adult liver (AL) has not yet been achieved due to the lack of specific cell surface markers. To identify new surface markers for hepatic stem cells, we analyzed differences in the gene expression profile of embryonic day (ED) 13.5 fetal liver stem/progenitor cells (FLSPC) versus AL by complementary DNA (cDNA) microarray technology. Using FLSPC purified to >90% by immunomagnetic selection for E-cadherin and high density (27k) mouse cDNA microarrays, we identified 474 genes that are more strongly expressed in FLSPC (FLSPC-up genes) and 818 genes that are more strongly expressed in AL (AL-up genes). The most highly overrepresented gene ontology (GO) categories for FLSPC-up genes are nucleus, cellular proliferation, and cell cycle control. AL-up genes are overrepresented for genes in metabolic pathways for specific hepatic functions. We identified 24 FLSPC-up gene surface markers and 69 AL-up gene surface markers. Western blot studies confirmed the expression of the FLSPC-up gene neighbor of Punc E11 (Nope) in fetal liver, but expression was not detectable in AL. Immunohistochemistry, confocal microscopy, and fluorescence-activated cell sorting (FACS) analysis of fetal liver demonstrated that Nope is specifically expressed on the surface of FLSPC within the fetal liver. Conclusion: This is the first microarray study to analyze the specific gene expression profile of purified murine FLSPC. Our analysis identified 24 new/potential cell surface markers for murine fetal hepatic stem cells, of which Nope may be particularly useful in future studies to identify, characterize and isolate hepatic stem cells from the AL. (HEPATOLOGY 2007.)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    41
    Citations
    NaN
    KQI
    []