Developmental Changes in EEG Phase Amplitude Coupling and Phase Preference over the First Three Years After Birth

2019 
The coupling of the phase of slower electrophysiological oscillations with the amplitude of faster oscillations, termed phase-amplitude coupling (PAC), is thought to facilitate dynamic connectivity in the brain. Though the brain undergoes dramatic changes in connectivity during the first few years of life, how PAC changes through this developmental period has not been studied. Here, we examined PAC through electroencephalography (EEG) data collected longitudinally during an awake, eyes-open EEG collection paradigm in 98 children between the ages of 3 months and 3 years. We implement a novel technique developed for capturing both PAC strength and phase preference (i.e., where in the slower oscillation waveform the faster oscillation shows increased amplitude) simultaneously, and employed non-parametric clustering methods to evaluate our metrics across a range of frequency pairs and electrode locations. We found that frontal and occipital PAC, primarily between the alpha-beta and gamma frequencies, increased from early infancy to early childhood (p = 1.35 x 10-5). Additionally, we found frontal gamma coupled with the trough of the alpha-beta waveform, while occipital gamma coupled with the peak of the alpha-beta waveform. This opposing trend may reflect each region9s specialization towards feedback or feedforward processing, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []