Spin effect on the low-temperature resistivity maximum in a strongly interacting 2D electron system

2021 
The increase in the resistivity with decreasing temperature followed by a drop by more than one order of magnitude is observed on the metallic side near the zero-magnetic-field metal-insulator transition in a strongly interacting two-dimensional electron system in ultra-clean SiGe/Si/SiGe quantum wells. We find that the temperature $T_{\text{max}}$, at which the resistivity exhibits a maximum, is close to the renormalized Fermi temperature, in agreement with the dynamical mean-field theory. However, rather than increasing along with the Fermi temperature, the value $T_{\text{max}}$ decreases appreciably for spinless electrons in spin-polarizing magnetic fields, which is in contradiction with the theory in its current form. Remarkably, the characteristic scaling of the resistivity, predicted by the theory, holds in both spin-unpolarized and completely spin-polarized systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []