Analysis of an Extreme Weather Event in a Hyper Arid Region UsingWRF-Hydro Coupling, Station, and Satellite data

2018 
Abstract. This study investigates an extreme weather event that impacted the United Arab Emirates (UAE) in March 2016 using the Weather Research and Forecasting (WRF) model version 3.7.1 coupled with its hydrological modeling extension package (Hydro). Six-hourly forecasted forcing records at 0.5o spatial resolution, obtained from the NCEP Global Forecast System (GFS), are used to drive the three nested downscaling domains of both standalone WRF and coupled WRF/WRF-Hydro configurations for the recent flood-triggering storm. Ground and satellite observations over the UAE are employed to validate the model results. Precipitation, soil moisture, and cloud fraction retrievals from GPM (30-minute, 0.1o product), AMSR2 (daily, 0.1o product), and MODIS (daily, 5 km product), respectively, are used to assess the model output. The Pearson correlation coefficient (PCC), relative bias (rBIAS) and root-mean-square error (RMSE) are used as performance measures. Results show reductions of 24 % and 13 % in RMSE and rBIAS measures, respectively, in precipitation forecasts from the coupled WRF/WRF-Hydro model configuration, when compared to standalone WRF. The coupled system also shows improvements in global radiation forecasts, with reductions of 45 % and 12 % for RMSE and rBIAS, respectively. Moreover, WRF-Hydro was able to simulate the spatial distribution of soil moisture reasonably well across the study domain when compared to AMSR2 satellite soil moisture estimates, despite a noticeable dry/wet bias in areas where soil moisture is high/low. The demonstrated improvement, at the local scale, implies that WRF-Hydro coupling may enhance hydrologic forecasts and flash flood guidance systems in the region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    30
    Citations
    NaN
    KQI
    []