Persistent atomic frequency comb based on Zeeman sub-levels of an erbium-doped crystal waveguide

2020 
Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sub-levels of erbium ions that are doped into a lithium niobate waveguide, finding population lifetimes at cryogenic temperatures down to 0.7 K as long as seconds. Then, using these levels, we prepare and characterize atomic frequency combs (AFCs), which can serve as a memory for quantum light at 1532 nm wavelength. The results allow predicting a 0.1% memory efficiency, limited mainly by unwanted background absorption that we believe to be caused by excitation-induced erbium spin flips and frequency shifting due to two-level systems or non-equilibrium phonons. Hence, while it should be possible to create an AFC-based quantum memory in $ {{\rm Er}^{3 + }}{:}{{\rm Ti}^{4 + }}{:}{{\rm LiNbO}_3} $Er3+:Ti4+:LiNbO3, improved crystal growth together with optimized AFC preparation will be required to make it suitable for applications in quantum communication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    9
    Citations
    NaN
    KQI
    []