Fission observables from 4D Langevin calculations with macroscopic transport coefficients

2018 
We have extended the Langevin equations to 4 dimensions (4D) by allowing the independent deformation for the left ( δ 1 ) and right fragments ( δ 2 ) of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE) of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236 U and super-short fission modes in 257 Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []