Electromagnetic induction sensing of soil identifies constraints to the crop yields of north-eastern Australia

2011 
Salinity, sodicity, acidity, and phytotoxic concentrations of chloride (Cl–) in soil are major constraints to crop production in many soils of north-eastern Australia. Soil constraints vary both spatially across the landscape and vertically within the soil profile. Identification of the spatial variability of these constraints will allow farmers to tune management to the potential of the land, which will, in turn, bring economic benefit. For three cropping fields in Australia’s northern grains region, we used electromagnetic induction with an EM38, which measures apparent electrical conductivity of the soil (ECa) and soil sampling to identify potential management classes. Soil Cl– and soluble Na+ concentrations, EC of the saturated extract (ECse), and soil moisture were the principal determinants of the variation of ECa, measured both at the drained upper limit of moisture (UL) and at the lower limit (LL) of moisture extracted by the crop. Grain yield showed a strong negative relation with ECa at both UL and LL, although it was stronger for the latter. We arrive at a framework to estimate the monetary value of site-specific management options, through: (i) identification of potential management classes formed from ECa at LL; (ii) measurement of soil attributes generally associated with soil constraints in the region; (iii) grain yield monitoring; and (iv) simple on-farm experiments. Simple on-farm experiments suggested that, for constrained areas, matching fertiliser application to realistic yield potential, coupled to gypsum amelioration, could potentially benefit growers by AU$14–46/ha.year (fertiliser) and $207/ha.3 years (gypsum).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    24
    Citations
    NaN
    KQI
    []