Self-supervised Deep Subspace Clustering for Hyperspectral Images with Adaptive Self-expressive Coefficient Matrix Initialization

2021 
Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the ${k}$ -nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    5
    Citations
    NaN
    KQI
    []