Social environment regulates corticotropin releasing factor, corticosterone and vasopressin in juvenile prairie voles

2007 
Abstract Stressful social conditions, such as isolation, that occur during sensitive developmental periods may alter present and future social behavior. Changes in the neuroendocrine mechanisms closely associated with affiliative behaviors and stress reactivity are likely to underlie these changes in behavior. In the present study, we assessed the effects of post-weaning social housing conditions on the neuropeptides arginine vasopressin (AVP) and oxytocin (OT), and components of the hypothalamic–pituitary–adrenal axis (corticotropin releasing factor: [CRF], and corticosterone: [CORT]) in the prairie vole ( Microtus ochrogaster ), a socially monogamous bi-parental rodent. Following weaning at 21 days of age, prairie voles were maintained in one of three housing conditions: social isolation (isolate), paired with a same sex sibling (sibling) or paired with a stranger (stranger) of the same sex and age. Housing conditions were maintained for either 4 or 21 days. Central CRF, AVP and OT immunoreactivity (ir) were quantified and circulating plasma CORT, AVP and OT were assayed. Isolated voles had higher CRF-ir in the paraventricular nucleus of the hypothalamus (PVN) compared with sibling and stranger housed voles. Plasma CORT was significantly higher in isolates. AVP-ir was significantly lower in the PVN of isolate females compared to either sibling females or stranger females. However, AVP-ir was significantly higher in the supraoptic nucleus (SON) of isolates compared to siblings. There were no differences in central OT-ir or plasma OT. These results identify neuroendocrine mechanisms which respond to isolation and potentially modulate behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    70
    Citations
    NaN
    KQI
    []