Molecular beam epitaxy growth of high-quality arsenic-doped HgCdTe

2004 
We have initiated a joint effort to better elucidate the fundamental mechanisms underlying As-doping in molecular beam epitaxy (MBE)-grown HgCdTe. We have greatly increased the As incorporation rate by using an As cracker cell. With a cracker temperature of 700°C, As incorporation as high as 4×1020 cm−3 has been achieved by using an As-reservoir temperature of only 175°C. This allows the growth of highly doped layers with high quality as measured by low dislocation density. Annealing experiments show higher As-activation efficiency with higher anneal temperatures for longer time and higher Hg overpressures. Data are presented for layers with a wide range of doping levels and for layer composition from 0.2 to 0.6.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    25
    Citations
    NaN
    KQI
    []