Dynamic response of berea sandstone shock-loaded under dry, wet and water-pressurized conditions

1999 
A single-stage light-gas gun was used to perform shock-recovery experiments on Berea sandstone under dry, wet and hydrostatically water-pressurized conditions. The samples were impacted by flyer-plates to achieve stress levels in the range 1.3 to 9.8 GPa. The microstructure of the shocked samples was analyzed using scanning electron microscopy (SEM), laser particle analysis and X-ray computed microtomography (XCMT). The dry samples show strongly fragmented and irregularly fractured quartz grains with a considerably reduced porosity, whereas the wet and water-pressurized specimens show less grain damage and less porosity reduction. During shock compression the water in the pores distributes the stresses and therefore the contact force between the grains is reduced. The interaction between the grains during the shock process was modeled by explicitly treating the grain-pore structure using Smooth Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    7
    Citations
    NaN
    KQI
    []