A theory of direction selectivity for Macaque primary visual cortex

2021 
This paper offers a new theory for the origin of direction selectivity in the Macaque primary visual cortex, V1. Direction selectivity (DS) is essential for the perception of motion and control of pursuit eye movements. In the Macaque visual pathway, DS neurons first appear in V1, in the Simple cell population of the Magnocellular input layer 4C. The LGN cells that project to these cortical neurons, however, are not direction-selective. We hypothesize that DS is initiated in feedforward LGN input, in the summed responses of LGN cells afferent to a cortical cell, and it is achieved through the interplay of (a) different visual response dynamics of ON and OFF LGN cells, and (b) the wiring of ON and OFF LGN neurons to cortex. We identify specific temporal differences in the ON/OFF pathways that together with (b) produce distinct response time-courses in separated subregions; analysis and simulations confirm the efficacy of the mechanisms proposed. To constrain the theory, we present data on Simple cells in layer 4C in response to drifting gratings. About half of the cells were found to have high DS, and the DS was broad-band in spatial and temporal frequency (SF and TF). The proposed theory includes a complete analysis of how stimulus features such as SF and TF interact with ON/OFF dynamics and LGN-to-cortex wiring to determine the preferred direction and magnitude of DS. Significance StatementMotion perception is important for primates, and direction selectivity (DS), the ability to perceive the direction a target is moving, is an essential part of motion perception. Yet no satisfactory mechanistic explanation has been proposed for the origin of DS in primate visual cortex up until now. In this paper, we hypothesize that DS is initiated in feedforward LGN input as a result of the dynamic differences between the ON/OFF pathways. The mechanisms we propose are biology-based, and our theory explains experimental data for all spatial and temporal frequencies in visual stimuli. Exploiting temporal biases in parallel pathways is relevant beyond visual neuroscience; similar ideas likely apply to other types of neural signal processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []