Results of tests of the X2274 high power tetrode in a JT-60 110 to 130 MHz ICRH amplifier

1990 
This paper reports the results of tests of the newly developed Varian EIMAC X2274 in the JAERI JT-60 ICRH system at pulse lengths up to 6 seconds at 131 MHz. It is our belief that these tests achieved the highest long pulse, or CW, power that has ever been delivered by a single power grid tube at frequencies above 100 MHz. Varian's EIMAC X2274, developed in conjunction with General Atomics and the US Department of Energy, uses an improved pyrolytic graphite grid configuration which provides significantly better vhf performance than the grids of the X2242 tetrode which was tested in this system in 1989. The EIMAC X2274 combines the improved grids with a new anode design which reduces the required water flow approximately 50% and increases the maximum anode dissipation 80%. All tests were performed at 131 MHz, the system's highest operating frequency. Tests of both prototype EIMAC X2274s produced essentially identical results. The basic objectives of these tests were: to demonstrate that the system with the EIMAC X2274 can reliably produce 1.5 MW at 130 MHz at 5 second pulse lengths for the JT-60U tokamak and to collect data for use in the design of future high power ICRHmore » systems. In these tests the tube and system produced up to 1.7 MW at pulse lengths up to 5.4 seconds: i.e, the EIMAC X2274 in this system can easily meet Objective 1. The remainder of this paper shows that Objective 2 has been fulfilled. In addition to the high power tests, operational range tests were performed under variable VSWR conditions. Unlike the EIMAC X2242 tests were rf current heating of the screen grid limited output power, system parameters, rather than tube parameters, limited the output power in the high power tests. Operational range tests were conducted at output power levels chosen to be well within the system's anode cooling capability.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []