Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin

2021 
Cosmological Gamma-Ray Bursts (GRBs) are known to arise from distinct progenitor channels: short GRBs mostly from neutron star mergers and long GRBs from a rare type of core-collapse supernova (CCSN) called collapsars. Highly magnetized neutron stars called magnetars also generate energetic, short-duration gamma-ray transients called Magnetar Giant Flares (MGFs). Three have been observed from the Milky Way and its satellite galaxies and they have long been suspected to contribute a third class of extragalactic GRBs. We report the unambiguous identification of a distinct population of 4 local ($ $99.9% confidence. These properties, the host galaxies, and non-detection in gravitational waves all point to an extragalactic MGF origin. Despite the small sample, the inferred volumetric rates for events above $4\times10^{44}$ erg of $R_{MGF}=3.8_{-3.1}^{+4.0}\times10^5$ Gpc$^{-3}$ yr$^{-1}$ place MGFs as the dominant gamma-ray transient detected from extragalactic sources. As previously suggested, these rates imply that some magnetars produce multiple MGFs, providing a source of repeating GRBs. The rates and host galaxies favor common CCSN as key progenitors of magnetars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    4
    Citations
    NaN
    KQI
    []