MLP-LOA: a metaheuristic approach to design an optimal multilayer perceptron

2019 
Designing an ANN is a complex task as its performance is highly dependent on the network architecture as well as the training algorithm used to select proper synaptic weights and biases. Choosing an optimal design leads to greater accuracy when the ANN is used for classification. In this paper, we propose an approach multilayer perceptron-lion optimization algorithm (MLP-LOA) that uses lion optimization algorithm to find an optimum multilayer perceptron (MLP) architecture for a given classification problem. MLP-LOA uses back-propagation (BP) for training during the optimization process. MLP-LOA also optimizes learning rate and momentum as they have a significant role while training MLP using BP. LOA is a population-based metaheuristic algorithm inspired by the lifestyle of lions and their cooperative behavior. LOA, unlike other metaheuristics, uses different strategies to search for optimal solution, performs strong local search and helps to escape from worst solutions. A new fitness function is proposed to evaluate MLP based on its generalization ability as well as the network’s complexity. This is done to avoid dense architectures as they increase chances of overfitting. The proposed approach is tested on different classification problems selected from University of California Irvine repository and compared with the existing state-of-the-art techniques in terms of accuracy achieved during testing phase. Experimental results show that MLP-LOA performs better as compared to the existing state-of-the-art techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    5
    Citations
    NaN
    KQI
    []