Universal Dynamical Scaling of Quasi-Two-Dimensional Vortices in a Strongly Interacting Fermionic Superfluid.

2021 
Vortices play a leading role in many fascinating quantum phenomena. Here we generate a large number of vortices by thermally quenching a fermionic superfluid of ^{6}Li atoms in an oblate optical trap and study their annihilation dynamics and spatial distribution. Over a wide interaction range from the attractive to the repulsive side across the Feshbach resonance, these quasi-two-dimensional vortices are observed to follow algebraic scaling laws both in time and space, having exponents consistent with the two-dimensional universality. We further simulate the classical XY model on the square lattice by a Glauber dynamics and find good agreement between the numerical and experimental behaviors. Our work provides a direct demonstration of the universal 2D vortex dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []