Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants

2017 
Abstract Mycoplasma agalactiae exhibits antigenic variation by switching the expression of multiple surface lipoproteins called Vpmas. Although implicated to have a significant influence on the pathogenicity, their exact role in pathogen-host interactions has not been investigated so far. Initial attachment to host cells is regarded as one of the most important steps for colonization but this pathogen lacks the typical mycoplasma attachment organelle. The aim of this study was to determine the role of Vpmas in adhesion of M. agalactiae to host cells. ‘Phase-Locked’ Mutants (PLMs) steadily expressing single well-characterized Vpma lipoproteins served as ideal tools to evaluate the role of each of the six Vpmas in cytadhesion, which was otherwise not possible due to the high-frequency switching of Vpmas in the wildtype strain PG2. Using in vitro adhesion assays with HeLa and sheep mammary epithelial (MECs) and stromal (MSCs) cells, we could demonstrate differences in the adhesion capabilities of each of the six PLMs compared to the wildtype strain. The PLMV mutant expressing VpmaV exhibited the highest adhesion rate, whereas PLMU, which expresses VpmaU showed the lowest adhesion values explaining the reduced in vivo fitness of PLMU in sheep during experimental intramammary and conjunctival infections. Furthermore, adhesion inhibition assays using Vpma-specific polyclonal antisera were performed to confirm the role of Vpmas in M. agalactiae cytadhesion. This led to a significant decrease (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    5
    Citations
    NaN
    KQI
    []