Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice

2013 
Circadian rhythms are biochemical, physiological and behavioral processes that follow a 24-hr cycle, responding primarily to the periods of light and dark, and they have been observed in bacteria, fungi, plants and animals. The circadian clock that drives these rhythms—which dictate our sleep patterns and other processes—involves a set of genes and proteins that participate in a collection of positive and negative feedback loops. Previous research has mainly focused on identifying core clock genes—that is, genes that make up the molecular clock—and studying the functions of these genes and the proteins they code for. However, it has become clear that other clock genes are also involved in circadian behavior, and it has been proposed that polymorphisms in these non-core clock genes could contribute to the variations in circadian behavior displayed by different mammals. One important feedback loop in mammals involves two key transcription factors, CLOCK and BMAL1, that combine to form a complex that initiates the transcription of the negative feedback genes, Period and Cryptochrome. Shimomura et al. discovered that Usf1, a gene that codes for a transcription factor that is typically involved in lipid and carbohydrate metabolism, as well as other cellular processes, is also important. In particular, this transcription factor is capable of partially rescuing an abnormal circadian rhythm caused by a mutation in the Clock gene in mice. Shimomura et al. showed that the proteins expressed by the mutant Clock gene can bind to the same regulatory sites in the genome as the normal CLOCK:BMAL1 complex, but that gene expression of these targets is reduced because transcriptional activation is lower and binding of the complex is not as strong. However, proteins expressed by the Usf1 gene are able to counter this by binding to the same sites in the genome and compensating for the mutant CLOCK protein. Further experiments are needed to explore how the interactions between the USF1 and CLOCK:BMAL1 transcriptional networks regulate circadian rhythms and, possibly, carbohydrate and lipid metabolism as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    58
    Citations
    NaN
    KQI
    []