Assessing the health impacts attributable to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020.

2021 
Abstract China has effectively reduced the fine particulate (PM2.5) pollution from 2015 to 2020. Ozone pollution and related health impacts have become severe contemporaneously. The coordinated control of PM2.5 and ozone is becoming a new issue for China's air pollution control. This study quantitatively assessed the health impacts attributed to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020 and estimated the possible health benefits from achieving dual concentration targets during 2021–2025. Results show PM2.5 caused a total health impact of 2.45 × 107 disability-adjusted life years (DALYs) in 2020. All-cause and respiratory ozone-related health impact in 2020 was 1.04 × 107 DALYs and 1.56 × 106 DALYs. Between 2015 and 2020, the PM2.5-related health impacts decreased by 14.97%, while those ozone-related increased by 94.61% and 96.54% for all-cause and respiratory. Cities in the North China Plain have suffered higher health impacts attributable to PM2.5 and ozone pollution, indicating that the two-pollutant coordinated control is primarily needed. By achieving aggressive concentration target (decreasing 10%) between 2020 and 2025, China will reduce the PM2.5-related health impacts in 338 cities by 1.56 × 106 DALYs (improving 6.37%). By achieving general target (decreasing 10% or within the Interim target-1 of World Health Organization), the PM2.5-related health benefit will be 7.98 × 105 DALYs (improving 3.25%). The deteriorating ozone health risks will also be improved. Controlling air pollution in large cities and regional center cities can achieve remarkable health benefits. Due to the inter-region, inter-province, and inter-city difference of health impacts, targeted and differentiated pollution prevention and control need to be implemented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []