Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil

2019 
Abstract Cadmium (Cd) contamination in paddy soils poses food security risks and public health concerns. Exploring effective strategies to reduce rice grain Cd is an urgent need. In this study, field plot experiments were conducted to evaluate the effects of wollastonite application with or without phosphate (P) addition on Cd accumulation in rice ( Oryza sativa L.). Co-application of P and wollastonite showed greater efficiency than wollastonite amendments alone in raising soil pH and CEC and decreasing soil Cd availability. Cd concentration in brown rice was decreased by 71% under the wollastonite treatment alone, but was decreased by only 29–39% when wollastonite was coupled with different P amendments. This seeming contradiction could be ascribed to the dramatic decline in the phytoavailability of manganese (Mn) and the increase in molar ratio of iron (Fe) to Mn (Fe/Mn) in Fe plaques on root surfaces in the presence of P additions. Significant negative correlations between Mn and Cd in rice plants and positive correlations between Fe/Mn in Fe plaque and Cd in rice plants indicated that P-induced soil Mn deficiency and reduced Mn in Fe plaque impeded the alleviation of Cd accumulation in rice. Application of wollastonite in Si-deficient paddy soils was effective in reducing rice Cd accumulation while boosting rice yield, but co-application of P and wollastonite was counterproductive and should be avoided. This work emphasized that a better understanding of the relationships between Cd and related mineral nutrient uptake would be helpful in developing more efficient measures to reduce rice grain Cd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    19
    Citations
    NaN
    KQI
    []