Composition Changes, Releases, and Potential Exposure Risk of PBDEs From Typical E-waste Plastics

2022 
Abstract Since Stockholm Convention listed polybrominated diphenyl ethers (PBDEs) as persistent organic pollutants and banned their addition, alternative halogen flame retardants (AHFRs) have been substituted for PBDEs. This study systematically investigates the change trends of PBDEs and AHFRs from typical e-waste plastics and dust, as well as clarifying human exposure risks of PBDEs in formal and informal e-waste recycling enterprises, repair store and residential building. The results show that the PBDEs levels in five typical types of e-waste vary in the range of 1.08 × 10−3-30.8 μg/g, meeting the requirements of RoHS regulation. Compared with the residential buildings (1.49–1.68 μg/g), PBDEs in the dust from the formal and informal e-waste recycling enterprises are much higher, ranging from 4.70 to 536 μg/g. BDE-209 is the main congener in most e-waste plastic and dust samples. Meanwhile, AHFRs have become the important composition (3.5–61.5%) in e-waste plastics, while its contribution is lower in dust, implying the higher enrichment efficiency of PBDEs. For PBDEs exposure, the dust intake risk of PBDEs is much higher than skin contact for the workers, and the highest hazard quotient (HQ) value (1.40 × 10−1) and cancer risk (CR) value (1.21 × 10−7) both imply safe exposure levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []