De novo transcriptome characterization of the ghost moth, Thitarodes pui, and elevation-based differences in the gene expression of its larvae.

2015 
Abstract Thitarodes pui larvae are the hosts of a medicinal fungus, Ophiocordyceps sinensis , and are naturally distributed at an altitude of 4100–4650 m on Segrila Mountain of the Tibetan Plateau. Here, we conducted transcriptome profiling of T. pui larvae based on the Illumina high-throughput sequencing platform. Subsequently, we explored elevation-based differences of T. pui by comparing gene expression profiles between larvae at high-altitude (natural conditions) and larvae exposed to short-term (2 months) low-altitude conditions. A total of 105,935,208 clean reads were assembled into 70,048 unigenes with a mean length of 639 bp. All unigenes were searched against public databases, with 51.26% unigenes being successfully annotated in the NR, SWISS-PROT, EuKaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG) databases. A total of 11,846 unigenes were functionally classified into 239 KEGG pathways. Metabolism was the most represented pathway, with 4271 unigenes (36.05%). Using the transcriptome data as a reference, 629 (311 up-regulated/318 down-regulated) genes were differentially expressed by low-altitude larvae when compared with those of high-altitude larvae. The most significantly differentially expressed genes were annotated in the processes of carbohydrate metabolism, lipid metabolism, and respiration. This report provides valuable information about the T. pui transcriptome for future genomic studies, including how gene expression is altered in larvae reared at different elevations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    9
    Citations
    NaN
    KQI
    []